3GPP TSG-SA3 Meeting #109 
S3-223295
Toulouse, France, 14 - 18 November 2022
Source:
Nokia, Nokia Shanghai Bell
Title:
Sol#3 Resolution of EN mutual authentication
Document for:
Approval

Agenda Item:
5.11
1
Decision/action requested

Please approve proposed changes to Sol#3 as described below
2
References

[1]
3GPP TR 33.884 v0.2.0 Study on security of application enablement aspects for subscriber-aware northbound API access
[2]
3GPP TS 33.122 Security aspects of Common API Framework (CAPIF) for 3GPP northbound APIs
[3]
3GPP TS 33.501 Security architecture and procedures for 5G system.
3
Rationale

Sol#3 in TR 33.884 [1] contains the following EN, which is discussed and resolved by this contribution:
Editor's Note: Mutual authentication between API invoker and AEF is FFS.
The security model of OAuth does not depend on the ability of the resource server (aka AEF) to authenticate the client (aka API Invoker). The resource server is granting access to the client based on the access token presented by the client. Thus, OAuth security assumes that only authorized clients are in possession of a valid access token. 

Therefore, in case of the client credential grant, it is essential that the client is authenticated by the authorization server during the access token request. This requirement is clearly fulfilled by Sol#3.

Obviously, a malicious client could leak the token to another party, which could abuse the token. However, this attack does not need to be considered, since the client could also execute the API call and just share the result of the API call with a third party instead of sharing the token.
Thus, server-side certificate authentication is sufficient. It should be noted that this in-line with current CAPIF Security, which also does not mandate certificate based mutual authentication (see for instance step 5 in Figure 6.5.2.3-1 in TS 33.122 [2]).
Server-side certificate authentication is essential for the security, since otherwise an API Invoker might unintentionally share a valid access token with a man in the middle.

For server-side certificate authentication the API Invoker UE needs a root certificate, which can be used to validate the AEF. It is assumed that this root certificate can be the same, which is used by the API Invoker for server-side certificate authentication of the authorization server during the token request. In the context of the resolution of the Editor's Note on AKMA usage for securing the token request an Editor'S Note about provisioning of the provisioning of the root certificate has been proposed, which thus will not be duplicated.

In summary, it is proposed to remove the EN and to adda statement that server-side certificate authentication is used. 
4
Detailed proposal

Please accept the following changes to TR 33.884[1]:

**** START OF CHANGE ****

6.3
Solution #3: UE Originated API invocation using OAuth Client Credential Grant

6.3.1
Introduction

According to KI#1 and the SA1 requirement referenced in KI#1, a UE shall be able to access a northbound API of the 5G system. The API invocation is triggered by an application, which is not visible to the 5G system.

Therefore, it is assumed that details of the interface between the application and the API invoker on the UE are out of scope of this solution.

It is proposed to use the OAuth client credential grant (specified in clause 4.4. of [4]) as a basis for the solution.

6.3.2
Solution details

The context of the components of the solution is visualized in Figure 6.3.2-1.

It is assumed that the application is deployed on the mobile device consisting of the UE. For instance, the application might be an app installed on a smartphone. Note, whether the application is considered being part of the UE or being collocated with the UE on a mobile device is a matter of interpretation and not relevant for the solution.

The API Invoker on the UE is taking the role of the OAuth Client. If CAPIF is applied, the Authorization Server is part the CAPIF Core Function. In this case the interface between API Invoker and Authorization Function is part of the CAPIF-1 interface.


[image: image1.emf]AEFAuthorizationServerAPI InvokerApplicationUE


Figure 6.3.2-1: Solution components of UE originated API invocation using OAuth client credential grant.

A typical message flow executed for UE originated API invocation is depicted in Figure 6.3.2-2.


[image: image2.emf]AEFAuthzServerAPI InvokerApplication1. Request2. Token Request(scope)3. Authorize Request4. Token Response(token)5. API Request(token)6. Validate Request7. Execute Request8. API Response(result)9. Response


Figure 6.3.2-2: Message flow used for UE originated API invocation using OAuth client credential grant

Editor's Note: How the solution work over CAPIF framework is for further study. This includes location of Authorization Server and execution of CAPIF onboarding,

The individual steps are described below:

1. The flow is triggered by the application sending a request to the API invoker on the UE.

The interface between Application and API invoker is out of the scope of this solution.

Editor's Note. Authorization of the application is FFS.

2. Based on the received Request the API invoker on the UE (acting as an OAuth Client) sends an OAuth Token Request to the Authorization Server with the grant type set to "client_credentials".

The scope parameter is set by the API invoker based on the request of the application such that it covers the necessary scope of the subsequent API request in step 5.

The Token Request includes the authentication of the API Invoker using the API invoker's client credentials. The circumstance that the API invoker is located and associated with a UE can be exploited for instance by using AKMA

Editor's Note: Details of utilizing AKMA or other methods for the client authentication, which leverage the circumstance that the API invoker is located on and associated with a UE, are FFS.

Editor's Note: Since according to KI#1 and SA1 requirement the application is not visible to the 5G system this solution assumes that the Token Request does not contain any information about the identity of the application. However, this point might be FFS.

3. The authorization server is authorizing the request based on the identity of the API Invoker and the requested scope by applying stored policies and permissions.

Editor's Note: It is FFS how the Authz server authorizes API invoker when there are no proper prearranged policies.
4. In case of successful authorization the authorization server returns the token to the API invoker. The token includes claims, which reflect the granted scopes and permissions.

Editor's Note: Whether 3GPP needs to define additional scopes and claims for token requests and tokens is FFS.

5. The API invoker is sending the actual API request to the AEF. The API request contains the token received in the previous step.

The API Request is sent as https request. As part of the session establishment the API invoker authenticates the AEF by verifying the Authorization Server's server certificate.


6. The AEF is validating the incoming request. That is, the AEF verifies the validity of the token, and the AEF verifies that the request is within the scope described by the claims in the token.

Editor's Note: It is FFS, if the AEF can validate the scope of the API request solely on the content of the token or if other mechanisms are needed and, if so, if further standardization is required for this purpose.

7. In case of successful validation the AEF is executing the request by involving other NFs (not shown in the signalling diagram)

8. The AEF returns the result of the API call to the API invoker.

9. The API invoker completes the flow by sending a response to the application (which is based on and might include results received in the previous step.

Editor's Note: Whether client credential grant is sufficient for authorization of API invocation to access to resource owner’s resource is FFS

6.3.3
Evaluation

Editor's Note: Evaluation is FFS

**** END OF CHANGE ****
AEF
Authorization
Server
API Invoker
Application
UE



AEF
Authz
Server
API 
Invoker
Application
1. Request
2. Token Request (scope)
3. Authorize Request
4. Token Response (token)
5. API Request(token)
6. Validate Request
7. Execute Request
8. API Response(result)
9. Response



